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Abstract: 
The introduction of high-speed analog-to-digital converters has resulted in many of the 
traditional front-end and sub-array combining functions of multi-function, phased-array radar 
systems being performed in the digital rather than in the analog domain. Due to the intense 
amount of processing that is required, many of these functions had to be realized in hardware. 
This was originally accomplished using VLSI ASICs. However, the advent of multi-million gate 
field-programmable gate array (FPGA) has permitted these complex digital processing functions 
to be put in small packages with a degree of design flexibility that is normally associated only 
with software. This permits more of the radar functions to be realized in commercial off-the-
shelf (COTS) hardware by obviating the need of full-custom VLSI in many cases.  
 
The incorporation of FPGA technology into COTS processing subsystems permits more complex 
designs to be created than could be achieved by general-purpose or digital signal processors 
alone. Simply incorporating FPGAs into single board computers could solve many signal 
processing problems. However, because of the complexity of the signal processing in a multi-
function radar system, a distributed, parallel-processing architecture is usually required. In 
addition, the trend toward an increasing number of input channels and the formation of a greater 
number of simultaneous beams requires a high degree of interconnection among the processing 
elements. Therefore, the technology used to interconnect the computing elements must be 
flexible enough to accommodate different architectures and system requirements. Furthermore, 
the interconnection technology should be scalable enough to enable early design prototyping as 
well as system deployment over a wide range of mission platforms. 
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Example Interconnection of Radar Front-End Processing 

 
 
This paper focuses on the impact of using a heterogeneous distributed computing system for 
digital beamforming in a multi-function radar system. The interconnection of FPGAs requires 
balancing the utilization of FPGA resources for endpoint logic I/O with that for processing 
requirements. A balance must also be struck in the mapping of functions between the FPGAs and 
the programmable processors in a heterogeneous system. Very frequently, the scaling of 
particular requirements will require the interconnection topology to change rather than just scale. 
We examine several different sets of requirements and the subsequent mapping to the 
heterogeneous computing platforms and the tradeoffs involved. Particular focus is given to the 
changes in functional allocation and the resulting system topologies. 
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Radar System ArchitectureRadar System Architecture

Beamforming requires massive dataflow and computation
ADC precision and data rate are chosen to provide high dynamic range and 
and wide signal bandwidth
High number of input channels required in modern phased array radars to 
produce multiple beams and nulls
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Processing ResourcesProcessing Resources

Microprocessors
Fixed processing, I/O, and memory architecture
Task context switch requires microseconds
Native floating-point available
Low interaction between code modules

FPGAs
Customizable processing, I/O, and memory architecture
Task context switch requires reconfiguration -- milliseconds
Floating-point must be built or bought
Considerable interaction between IP cores
Signal propagation issues
Currently harder to program than microprocessors
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PowerPC MicroprocessorPowerPC Microprocessor

400 - 1000 MHz clock speeds
133 MHz system bus (MPC74xx) -- 851 MB/s
64-bit integer and floating-point units
128-bit AltiVec vector processing unit
Pipelined instruction unit
32 kB instruction and data caches
Up to 2 MB L2 cache

INSTRUCTION MMUDATA MMU

DATA CACHE INSTRUCTION CACHE

L2 CONTROLLER

LOAD/STORE UNIT

BUS INTERFACE UNIT

MEMORY SUBSYSTEM

MEMORY CONTROL UNIT

COMPLETION
UNIT

DISPATCH
UNIT

BRANCH
PROCESSING
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UNIT
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Tx/RxDevice

Virtex-II Pro FPGAVirtex-II Pro FPGA

Clock speeds lower than processors: 100 - 200 MHz clocks
Up to 20 full-duplex multi-gigabit transceivers.
Many DSP supporting features

PowerPC 
405 CORE
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Each block RAM contains two banks with independent sets of address and data lines
Gigabit transceivers provide over 240 MBps each direction -- over 4800 MBps throughput!
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Strawman System RequirementsStrawman System Requirements

Lots of channels -- 80+ input channels
ADC with “good” bandwidth and dynamic range

100 MSps -- 1.56 - 25 MHz bandwidth using fs/4 sampling
14-bit precision -- over 80 dB dynamic range

Reasonable implementation risk -- 100 MHz clock

ADC precision and rate and number of channels drive downstream requirements 
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Front-End ProcessingFront-End Processing

Digital Down Converter
fs/4 IF & BW
4x decimation
31-tap complex FIR, real symmetric coefficients
Usually no bit growth

Lowpass Decimation Filter
1x (bypass), 2x, 4x, 8x, and 16x decimation rates
0, 16, 32, 64, 128 taps
Real coefficients
0 to 2 bits of bit growth

Equalizer
16-tap, complex coefficients -- cannot generally exploit 
symmetry
Usually no bit growth
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Digital Down ConverterDigital Down Converter

Reduce complexity -- exploit fs/4 center frequency and bandwidth
Complex mixing reduces to polyphase commutation

• Cosine and sine select even and odd samples respectively
– cos(jnπ/4) = 1, 0, -1, 0, 1,…; sin(jnπ/4) = 0, j, 0, -j, 0,…

Exploit polyphase structure for decimation

h3h7h11h15h11h7h3

h0h4h8h12h14h10h6h2

h1h5h9h13h13h9h5h1

h2h6h10h14h12h8h4h0 +
+ I

Q

POLYPHASE fs/4 DDC

Odd number of taps creates symmetries in the FIR coefficients

⎟
⎠

⎞
⎜
⎝

⎛ +−++−+⎟
⎠

⎞
⎜
⎝

⎛ +−+−= ∑∑∑∑
−

=

−

=

−

=

−

=

1

0
0

1

0
2

1

0
1

1

0
3 ]34[][]14[][]24[][]4[][][

N

i

N

i

N

i

N

i

inxihinxihjinxihinxihny



10© 2003 Mercury Computer Systems, Inc.

Digital Down ConverterDigital Down Converter

Reduce complexity -- exploit filter symmetries
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Digital Down ConverterDigital Down Converter

Reduce complexity -- exploit 4x decimation
Use MAC-Engine to do 4 multiplies per input sample

• Use fclk = 4 x fs to time share multipliers
Configure logic slices as shift registers (SRL’s) to save BRAM

• Need to store 3 sets of numbers -- need 2 BRAM’s
– Save BRAM by using logic slices to store both sets of samples
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Low Pass FilterLow Pass Filter

Reduce complexity -- use MAC-Engine FIR implementation
Run multipliers at 4x sample rate -- time share multipliers
Exploit constant length-decimation product

• Single structure handles multiple filter implementations
• Single clock frequency

Use dual-bank feature of BRAM
• First bank stores samples
• Second bank stores FIR coefficients clk
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EqualizerEqualizer

Reduce complexity -- reduce number of multipliers and BRAM’s
Exploit fclk/fs -- use MAC-Engine
Implement complex multiply using only 3 MAC-Engines

• Use common product term in complex multiply
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Front-End RealizationFront-End Realization

FPGA features can be exploited to maximize utilization
Up to 20 100-MSps channels per FPGA
DDC with 31-Tap FIR using only 3 multipliers/channel
LPF 16-128 Tap decimating FIR using only 4 multipliers/channel
EQU 16-Tap complex FIR using only 12 multipliers/channel

Channels 1-20
200 MByte/s

20x 2.5 Gb FO

From 
ADC’s Additional copy of 

each channel for 
distribution

Channels 1-20
100 MByte/s
9x 2.5 Gb FODDC EQULPF

DDC EQULPF
DDC EQULPF

DDC EQULPF

Digital Receiver Module for 20x 100 MSps Channels on Virtex-II Pro 100

Multipliers Block Ram Logic Slices

Processing
I/O
Memory Ctrl.
Margin

FPGA Utilization for 20x 100 MSps Channels

HIGH FPGA
UTILIZATION
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Back-End ProcessingBack-End Processing

FPGAs can be used to address data flow 
requirements that persist in the system until 
application of adaptive beamforming weights

Digital Pulse Compression
• Fast convolution with FFT IP cores

Doppler Processing
• FPGA FFT IP cores available

Adaptive Beamforming Weight Application
• Similar advantages to those in sub-array beamformer

FPGAs can augment weight computation
QR Decomposition

• New FPGA solutions may replace microprocessors
Cholesky Decomposition

• Possibly form covariance matrix in adjunct FPGA
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Digital Pulse CompressionDigital Pulse Compression

FFT IP cores can be used to implement pulse compression
8192-tap FFT @ 25 MSps/channel
6 sub-array channels / FPGA
3-stage pipelined convolver -- 2 convolvers / FPGA
Enough resources to sum partial products from beamformer

Memory

MULFFT IFFT
SUM

Partial Product 1

Partial Product 2

Memory

MULFFT IFFT
I/O

Multipliers Block Ram Logic Slices

Processing

I/O

Memory Ctrl.

Margin

DIGITAL PULSE COMPRESSION FPGA UTILIZATION

GOOD FPGA
UTILIZATION

FFT cores tend to be BRAM hungry.

Doppler processing 
can be implemented 
using similar FFT 
cores
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Beamformer ArchitecturesBeamformer Architectures

Unconstrained Linear Architecture
All input channels contribute to each output

Constrained Linear Architecture
A subset of input channels contributes to any output

Mesh Architecture
All input channels contribute to each output
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Beamformer Module ConstraintsBeamformer Module Constraints

Basic limits are imposed by I/O and number of multipliers
Inputs over 18-bits can increase the number of multipliers

Keep watch on bit growth in front-end processing 

I/O and Multiplier Constraints for Virtex-II Pro 100

Assumes: 3-MAC / CMAC
25 MSps channels
100 MHz clock
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Beamformer Module ConstraintsBeamformer Module Constraints

Multiplexing must be designed to maximize communication
Beam Partitioned output multiplexing may reduce efficiency
Alternate multiplexing methods may be necessary
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Unconstrained Linear ArchitectureUnconstrained Linear Architecture

Full MxN unconstrained complex matrix multiply
Outputs only from a single module
Processing throughput limited by beamformer module I/O
Communication latency across beamformer is an issue
Additional beams can be produced by multiple passes on data

Decreases overall radar duty cycle
Memory should be located in digital beamformer to save I/O bandwidth
Increased beamformer processing speed may be required
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Unconstrained Linear ArchitectureUnconstrained Linear Architecture

Unconstrained linear beamformer module is I/O bound
Total number of input links plus output links is constant
Choice of input to output balance affects utilization
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4 Input Module Realization4 Input Module Realization

I/O and compute bounds are not close -- low utilization
36 x 96 unconstrained matrix multiply
35 modules required for FPGA digital processor

Front-end – 5 modules
Small-array beamformer – 24 modules
Digital pulse compression – - 6 modules

LOW FPGA
UTILIZATION

BEAMFORMER MODULE UTILIZATION

Multipliers Block Ram Logic Slices

Processing

I/O

Memory Ctrl.

Margin

96
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20 Input Module Realization20 Input Module Realization

I/O and compute bounds are close -- good utilization 
40 x 100 unconstrained matrix multiply 
22 modules required for FPGA digital processor

Front-end – 5 modules
Small-array beamformer – 10 modules
Digital pulse compression – 7 modules

GOOD FPGA
UTILIZATION

BEAMFORMER MODULE UTILIZATION

Multipliers Block Ram Logic Slices

Processing
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Memory Ctrl.

Margin
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Constrained Linear ArchitectureConstrained Linear Architecture

Use each beamformer module to produce outputs
MxN constrained complex matrix multiply

Use only a subset of inputs for each output

I/O and computation bounds the as in the unconstrained case
Inputs and outputs must be balanced to maximize utilization
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20 Input Module Implementation20 Input Module Implementation

Adding matrix constraints increases the number of outputs
50 x 100 constrained matrix multiply
19 modules required for FPGA digital processor

Front-end - 5 modules
Small-array beamformer – 5 modules
Digital pulse compression - 9 modules

GOOD FPGA
UTILIZATION

BEAMFORMER MODULE UTILIZATION
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Mesh ArchitectureMesh Architecture

Mesh architecture offers utilization enhancement
I/O and computation bounds touch

Full unconstrained matrix multiply
Partially formed beams sent forward for summing in DPC
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Mesh ImplementationMesh Implementation

I/O and compute bounds touch -- high utilization 
40 x 96 unconstrained matrix multiply
20 modules required for FPGA digital processor

Front-end – 5 modules
Small-array beamformer – 8 modules
Digital pulse compression – 7 modules

HIGH FPGA
UTILIZATION

BEAMFORMER MODULE UTILIZATION

Multipliers Block Ram Logic Slices

Processing
I/O
Memory Ctrl.
Margin
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Architecture ComparisonArchitecture Comparison

Mesh architecture gives highest multiplier utilization

Unconstrained
Linear

Unconstrained
Linear

Constrained
Linear

Mesh

Input Channels 96 100 100 96

Output Channels 36 40 50 40

Beamformer Modules 24 10 5 8

Inputs per Module 4 20 20 12

Multiplies per Output 96 100 40 96

Total Multiplies 3456 4000 2000 3840

Multiplies per Module 144 400 400 480
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Large SystemsLarge Systems

Large systems can be created through layering beamformers
8 beam system, 20 channels per beam -- 160 channels
160 x 96 unconstrained matrix multiply

65 modules required for FPGA digital processor
Front-end - 5 modules
Small-array beamformer – 32 modules
Digital pulse compression - 28 modules

Channels 1-96 Channels 1-160
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SummarySummary

FPGAs can provide efficient I/O and computational power to 
address high input bandwidths of modern radar systems.

Front-end processing
Sub-array beamformer
Digital pulse compression
Adaptive beamforming

System topologies that provide efficient utilization of 
computational and I/O resources change dramatically as system 
requirements scale.

Watch I/O and computation bounds

Small changes in system requirements can dramatically 
increase complexity of FPGA implementations when 
computational bounds of embedded resources is exceeded.

Watch for symmetries in filters
Watch bit growth before 18-bit multipliers

FPGAs should be used until application of adaptive 
beamforming weights due to high bandwidth dataflow.
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